Lithium-Verbindungen eines Chlorsilanols und von Fluor-funktionellen Siloxanolen; Reaktionen und Kristallstrukturen

Dieter Schmidt-Bäse und Uwe Klingebiel*

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 17. August 1989

Key Words: Lithium salts / Chlorosilanol / Fluorosilanolates

Lithium Compounds of a Chlorosilanol and of Fluoro-Functional Siloxanols; Synthesis and Crystal Structures

The lithiated disilanol $(CMe_3)_2Si(OH)_2$ (1) serves as a starting material in the reaction with halosilanes for the stepwise construction of siloxanols (4, 5, 7). 4 and 7 react with $n-C_4H_9Li$ to give the lithium compounds 6 and 8, respectively. 6 crystallizes in hexane as a trimer with planar three-coordinated lithium,

Lithiierte Silanole und Siloxanole dienen seit den achtziger Jahren als Reaktionszwischenstufen zur schrittweisen Synthese kettenförmiger und ringförmiger Siloxane¹⁻⁸. Die strukturellen Kenntnisse über diese Zwischenstufen sind bisher sehr begrenzt⁸, obwohl nicht nur ein prinzipielles Interesse an den immer wieder überraschenden und kaum vorhersagbaren Strukturen^{9,10} von Lithium-Verbindungen besteht, sondern die Strukturchemie dieser Verbindungen auch einen Beitrag zur Struktur-Reaktivitäts-Beziehung leisten kann. Wir synthetisierten ein lithiiertes Chlorsilanol, ein 1,3-Disiloxanol und ein 1,3,5-Trisiloxanol und führten von diesen Verbindungen bzw. ihren Abbauprodukten Kristallstrukturbestimmungen durch.

Ergebnisse und Diskussion

In der bekannten Reaktion von Di-*tert*-butylsilandiol $(1)^{3,11}$ mit PCl₅ entsteht das Chlorsilanol 2¹²⁾, das unter Normalbedingungen keine Tendenz zur HCl-Abspaltung aufweist. Verbindung 2 wird in Hexan mit *n*-Butyllithium unter Butanabspaltung lithiiert und der auftretende Niederschlag durch THF-Zugabe in Lösung gebracht. Die Lithium-Verbindung 3⁷ zeigt selbst in der Siedehitze in Hexan/THF keine Salzeliminierung und kristallisiert bei Raumtemperatur aus.

Das lithiierte Di-*tert*-butylsilandiol 1 reagiert mit Di-*tert*butyldifluorsilan zum 1-Fluor-3-hydroxy-funktionellen Disiloxan 4^{13} , welches als Vorstufe für die Lithium-Verbindungen **6a** und **6b**⁸ dient. Lithiiertes **4** kristallisiert aus Hexan als **6a** bei -3° C. Da sich die Kristalle von **6a** bei Raumtemperatur im Röntgenstrahl als nicht stabil erwiesen⁸, wurde eine Messung bei -85° C vorgenommen. Lithiiertes **4** kristallisiert aus THF als THF-Addukt **6b**⁸.

Durch Umsetzung von 5^{8} mit lithiierten Fluorsilanol gelangt man zum 1-Fluor-5-hydroxy-funktionellen Trisiloxan 7^{8} . Wird 7 in Hexan mit *n*-C₄H₉Li lithiiert, so entsteht die Lithium-Verbindung 8^{8} , die selbst in der Siedehitze in Hebonded to two Si - O atoms and one Si - F atom. 8 reacts in THF with LiF elimination to give cyclotrisiloxane 9. The chlorosilanol 2 is prepared by hydroxy-chlorine exchange in 1 with PCl₅. The stable lithium derivative of 2 (3) forms a dimeric THF adduct with tetrahedral lithium.

xan keine Tendenz zur LiF-Abspaltung erkennen läßt. Wird die Lösung mit THF versetzt, so tritt keine Li-THF-Koordination ein. Löst man dagegen 8 in reinem THF, wird LiF eliminiert, und unter Ringschlußreaktion das Cyclotrisil-

Schema 1

oxan 9^{3} gebildet. Ein THF-Addukt von 8 konnte nicht abgefangen werden.

Kristallstruktur des lithiierten Chlorsilanolats 3

Das lithiierte Chlorsilanolat liegt im Kristall als Dimer vor, dessen zentrale Einheit ein planarer Li-O-Vierring bildet (Abb. 1). In diesem Vierring sind die Lithium-Atome durch die zusätzliche Absättigung mit zwei THF-Molekülen vierfach koordiniert. Die Ringebenen der THF-Moleküle stehen nahezu senkrecht zur Li-O-Vierring-Ebene, um so dem sterischen Druck der benachbarten Substituenten am Silicium auszuweichen. Die *tert*-Butyl-Gruppen der monomeren Einheiten stehen, bezogen auf die Vierringebene, *trans* zueinander.

Die Ringatomabstände sind innerhalb der Standardabweichungen gleich. Im Ring findet man einen leicht aufge-

Abb. 1. Struktur von 3 im Kristall

Tab. 1. Atomkoordinaten (× 10^4) und äquivalente, isotrope thermische Parameter ($pm^2 \times 10^{-1}$) von 3^{a_j}

	x	у	Z	U(eq)
Si(1)	2227(1)	859(1)	1610(1)	30(1)
C1(1)	1246(1)	1538(1)	2736(1)	48(1)
0(1)	1105(2)	402(1)	762(2)	29(1)
Li(1)	96(5)	-546(3)	687(4)	34(2)
C(1)	3383(3)	208(2)	2655(3)	40(1)
C(11)	2490(3)	-250(2)	3340(3)	51(1)
C(12)	4469(4)	641(2)	3517(3)	70(1)
C(13)	4117(4)	-361(2)	1977(3)	61(1)
C(2)	3145(3)	1617(2)	863(3)	40(1)
C(21)	2064(4)	2120(2)	163(3)	52(1)
C(22)	3969(4)	1222(2)	40(3)	65(2)
C(23)	4117(4)	2150(2)	1671(3)	62(1)
0(2)	-947(2)	-630(1)	2030(2)	41(1)
C(3)	-1550(3)	79(2)	2319(3)	43(1)
C(4)	-1580(4)	25(2)	3578(3)	52(1)
C(5)	-1788(5)	-821(2)	3740(3)	66(2)
C(6)	-1148(5)	-1190(2)	2866(3)	62(1)
0(3)	1276(2)	-1521(1)	760(2)	42(1)
C(7)	1578(4)	-2107(2)	1613(3)	56(1)
C(8)	2186(8)	-2740(3)	1102(5)	130(3)
C(9)	2377(6)	-25 38 (3)	-1(4)	96(2)
C(10)	1825(4)	-1760(2)	-238(3)	56(1)

^{a)} Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij}-Tensors.

weiteten Winkel an den Li-Atomen (99.3°) und einen entsprechend kleineren Winkel an den O-Atomen (80.7°). Diese Ringgeometrie ist gleich der bei bekannten Li-O-Vierringen^{8,14,15)}. Sie ermöglichen einen größeren Abstand der sich am Ring gegenüberstehenden, voluminöseren Sauerstoff-Substituenten. Die Li-O-Abstände sind mit 192.5 pm für Li-O(Si) und 204.9 pm für Li-O(THF) länger als die in vergleichbaren dreifach koordinierten Verbindungen^{8,15)}. Die Si-O-Bindung ist mit 157.6 pm relativ kurz.

Tab. 2. Ausgewählte Bindungsabstände [pm] und -winkel [°] von 3

			_		
Si(1)-C1(1)	213	.7 (1)	Si(1)-0(1)	L57.6	(2)
Si(1) - C(1)	190	.6 (3)	Si(1)-C(2)	190.4	(3)
0(1)-Li(1)	192	.3 (5)	0(1)-Li(1A)	192.7	(5)
Li(1)-0(2)	204	.6 (5)	Li(1)-0(3)	205.3	(5)
c1(1)-si(1)-0	(1)	109.6(1)	C1(1)-Si(1)-C(1)	101.9	9(1)
0(1)-Si(1)-C(1)	112.8(1)	C1(1) - S1(1) - C(2)	102.2	2(1)
0(1)-Si(1)-C(2)	113.0(1)	C(1)-Si(1)-C(2)	115.9	\dot{i}
Si(1)-0(1)-Li	(1)	139.8(2)	Si(1)-O(1)-Li(1A)	139.3	3(2)
Li(1)-0(1)-Li	(1A)	80.7(2)	0(1)-Li(1)-O(2)	110.	5(2)
0(1)-Li(1)-O((3)	115.1(2)	0(2)-Li(1)-O(3)	105.4	4(2)
0(1)-Li(1)-0(1A)	99.3(2)	0(2)-Li(1)-O(1A)	112.9	€(2)
0(3)-Li(1)-O((1A)	113.6(2)	Li(1)-O(2)-C(3)	114.2	2(2)
Li(1)-0(2)-C((6)	137.5(2)	Li(1)-0(3)-C(7)	131.8	3(3)
Li(1)-0(3)-C(10)	119.5(2)			

Kristallstruktur des lithiierten Disiloxanolats 6a

Das Fluor-funktionelle Disiloxanolat **6a** wird durch eine Lithium-Fluor-Koordination zum Sechsring überbrückt und bildet als Trimer durch Verknüpfung der Li – O-Kanten einen zentralen Li – O-Sechsring (Abb. 2). In dieser bisher unbekannten Anordnung ist Lithium mit einem Fluor-Atom und zwei Sauerstoff-Atomen als Bindungspartner dreifach koordiniert. Dieser neue Strukturtyp eines Li – O-Sechsrings¹⁶⁾ zeigt eine leicht verdrillte Boot-Konformation, in der Lithium und Sauerstoff planare Bindungsgeometrie aufweisen. Im Ring alternieren kurze und lange Li – O-Bindungen, wobei die Li – O-Abstände der überbrückten Disiloxanolate durchweg größer sind. Die hier gefundenen

Abb. 2. Struktur von 6a im Kristall

Lithium-Verbindungen eines Chlorsilanols und von Fluor-funktionellen Siloxanolen

Li-F-Kontakte sind mit 196.6-202.6 pm, verglichen mit denen in der Struktur von $\mathbf{8}^{8}$ gefundenen (187.8 pm), recht lang. Aufgrund dieser Li-F-Kontakte verlängern sich die

Tab. 3. Atomkoordinaten (× 10⁴) und äquivalente, isotrope thermische Parameter ($pm^2 \times 10^{-1}$) von **6a**^{a)}

	x	У	z	U(eq)
$\overline{Si(1)}$	6227(1)	792(1)	6660(1)	29(1)
Si(2)	5252(1)	553(1)	7711(1)	37(1)
0(1)	6751(1)	703(1)	7320(1)	30(1)
0(2)	5538(1)	803(1)	6982(1)	35(1)
F(1)	5729(1)	-143(1)	8081(1)	42(1)
$L_{1}(1)$	6620(2)	-129(2)	7989(2)	39(1)
C(1)	6239(1)	1807(1)	6144(1)	41(1)
c(11)	6113(1)	2524(2)	6640(2)	62(1)
C(12)	6864(1)	1982(2)	5876(2)	63(1)
C(13)	5737(1)	1829(2)	5508(2)	73(1)
c(2)	6243(1)	-177(1)	6076(1)	39(1)
C(21)	6306(1)	-928(1)	6576(1)	51(1)
C(22)	5652(1)	-298(2)	5561(1)	62(1)
C(23)	6798(1)	-175(2)	5646(2)	65(1)
C(3)	4488(1)	20(1)	7467(2)	53(1)
C(31)	4608(1)	-847(2)	7183(2)	67(1)
C(32)	4111(1)	511(2)	6875(2)	82(1)
C(33)	4101(1)	-86(2)	8107(2)	85(1)
G(4)	5293(1)	1382(1)	8420(1)	48(1)
C(41)	5202(1)	1006(2)	9158(2)	75(1)
C(42)	4823(1)	2066(2)	8241(2)	74(1)
C(43)	5940(1)	1771(2)	8508(1)	57(1)
Si(3)	8863(1)	912(1)	7885(1)	39(1)
Si(4)	8300(1)	2659(1)	8001(1)	46(1)
0(3)	8222(1)	519(1)	8050(1)	37(1)
0(4)	8804(1)	1951(1)	7928(1)	44(1)
Li(2)	7 509(2)	1057(2)	7632(2)	43(1)
F(2)	7656(1)	2258(1)	7638(1)	55(1)
C(5)	8987(1)	642 (2)	6922(1)	49(1)
C(51)	8431(1)	978(2)	6432(1)	60(1)
C(52)	9578(1)	1010(2)	6671(2)	81(1)
C(53)	8991(2)	-299(2)	6805(2)	74(1)
C(6)	9543(1)	649(2)	8573(1)	59(1)
C(61)	9331(1)	668(2)	9324(1)	83(1)
C(62)	9802(1)	-219(2)	8465(2)	80(1)
C(63)	10066(1)	12/9(3)	8544(2)	102(2)
G(7)	8435(1)	3393(2)	7437(2)	6/(L) 10((1)
C(71)	8910(2)	41//(2)	/03L(2)	104(1)
C(72)	7000(2)	5517(2)	0/20(2)	95(1)
C(P)	9159(1)	4062(2)	2061(2) 8061(2)	68(1)
C(81)	7719(2)	3586(2)	0023(2)	110(2)
C(81)	9776(2)	3031(3)	9023(2)	101(1)
C(82)	7962(1)	2077(2)	9427(2)	79(1)
G(05) Si(5)	7086(1)	-1311(1)	9244(2)	34(1)
SI(J)	8223(1)	-2288(1)	8896(1)	62(1)
0(5)	7145(1)	-705(1)	8611(1)	$\frac{42(1)}{31(1)}$
0(6)	7615(1)	-2058(1)	9265(1)	39(1)
Li(3)	7943(2)	-413(2)	8428(2)	42(1)
F(3)	8505(1)	-1387(1)	8703(1)	51(1)
C(9)	7279(1)	-700(2)	10135(1)	50(1)
C(91)	6847(1)	53(2)	10168(1)	66(1)
C(92)	7257(2)	-1217(2)	10820(1)	76(1)
C(93)	7931(1)	-348(2)	10127(1)	64(1)
c(10)	6333(1)	-1914(1)	9223(1)	47(1)
C(101)	6126(1)	-2154(2)	8442(1)	50(1)
C(102)	6418(1)	-2730(2)	9655(2)	74(1)
C(103)	5803(1)	-1429(2)	9498(2)	68(1)
C(11)	8046(1)	-2796(2)	7991(1)	50(1)
C(111)	7652(1)	-3576(2)	8049(2)	65(1)
C(112)	8633(1)	-3020(2)	7645(2)	81(1)
C(113)	7678(1)	-2180(2)	7488(1)	57(1)
C(12)	8811(1)	-2807(2)	9560(2)	65(1)
C(121)	8766(2)	-3748(2)	9520(2)	118(2)
C(122)	9465(2)	-2559(3)	9420(2)	107(2)
C(123)	8710(2)	-2550(2)	10332(2)	92(1)

^{a)} Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

Si-F-Bindungen (162.6-163.6 pm). Hervorzuheben sind die relativ kleinen Si-O-Si-Bindungswinkel (138.1 bis 140.8°). Die Si-O(Li)-Bindungsabstände sind mit 159.3 bis 159.7 pm geringfügig länger als die in den bisher bekannten analogen Systemen.

Tab. 4. Ausgewählte Bindungsabstände [pm] und -winkel [°] von **6a**

Si(1)-0(1)	159.7 (1)	Si(1)-0(2)	167.7 (1)
Si(2)-0(2)	161.0 (2)	Si(2)-F(1)	163.5 (1)
0(1)-Li(1)	187.8 (4)	O(1) - Li(2)	178.7 (4)
F(1)-Li(1)	196.8 (4)	Li(1)-0(5)	180.1 (4)
Si(3)-O(3)	159.5 (2)	Si(3)-0(4)	168.5 (2)
Si(4)-0(4)	160.2 (2)	Si(4)-F(2)	162.6 (1)
0(3)-Li(2)	187.6 (4)	O(3)-L1(3)	179.7 (4)
Li(2)-F(2)	1 96 .6 (4)	Si(5)-O(5)	159.3 (1)
Si(5)-0(6)	167.2 (2)	Si(6)-O(6)	160.4 (2)
Si(6)-F(3)	163.6 (1)	0(5)-Li(3)	186.9 (4)
Li(3)-F(3)	202.6 (4)		
0(1)-Si(1)-C)(2) 108.5(1)	0(2)-Si(2)-F(1)	104.1(1)
Si(1)-0(1)-I	Li(1) 115.6(1)	Si(1)-O(1)-Li(2)) 141.6(2)
Li(1)-0(1)-I	Li(2) 102.3(2)	Si(1)-O(2)-Si(2)) 138.1(1)
Si(2)-F(1)-I	Li(1) 123.0(1)	O(1)-Li(1)-F(1)	106.8(2)
0(1)-Li(1)-C)(5) 131.9(2)	F(1)-Li(1)-O(5)	120.2(2)
0(3)-Si(3)-C)(4) 108.3(1)	O(4)-Si(4)-F(2)	104.5(1)
Si(3)-0(3)-I	Li(2) 116.0(1)	Si(3)-O(3)-Li(3)) 138.6(1)
Li(2)-0(3)-I	Li(3) 104.6(2)	Si(3)-O(4)-Si(4)) 140.5(1)
0(1)-Li(2)-0)(3) 133.2(2)	0(1)-Li(2)-F(2)	117.5(2)
0(3)-Li(2)-H	F(2) 109.1(2)	Si(4)-F(2)-Li(2)	121.8(1)
0(5)-Si(5)-C	0(6) 108.8(1)	0(6)-Si(6)-F(3)	103.7(1)
Li(1)-0(5)-9	Si(5) 135.9(1)	Li(1)-O(5)-Li(3)	106.9(2)
Si(5)-0(5)-I	Li(3) 117.0(1)	Si(5)-O(6)-Si(6)	140.8(1)
0(3)-Li(3)-0	0(5) 130.1(2)	0(3)-Li(3)-F(3)	122.0(2)
0(5)-Li(3)-H	F(3) 107.9(2)	Si(6)-F(3)-Li(3)	121.0(1)

Einen interessanten Strukturvergleich ermöglichen die bekannten Strukturen von 6b⁸⁾ und 8⁸⁾. Durch Zugabe von Donor-Lösungsmittelmolekülen (THF) zu 6a wird der Oligomerisierungsgrad von 3 auf 2 erniedrigt. Es bildet sich also kein Monomer, sondern ein Dimer, in dem das Lithium auf Fluor als Koordinationspartner verzichtet und sich stattdessen mit THF absättigt. Dies könnte darauf hinweisen, daß das THF-Molekül den attraktiveren Bindungspartner für Lithium darstellt. Auf der anderen Seite deuten die langen Li-O/Li-F-Bindungen und die relativ kleinen Si - O - Si-Winkel (im Dimer 156.0° bzw. 159.4°) auf eine gewisse sterische Spannung in der Disiloxanolat-Einheit, die durch die Aufgabe der Li-F-Bindung und der daraus resultierenden Dimeren-Bildung gelöst wird. Ein Vergleich mit der Struktur von Verbindung 8 zeigt, daß in 6a die Trimeren-Bildung noch möglich ist, während das nächst größere Trisiloxanolat konformativ das sterisch günstigere Dimer bevorzugt. Der kurze Li-F-Kontakt in 8 gegenüber dem wesentlich längeren Li-F-Abstand in 6a könnte einen Hinweis darauf geben, warum 8 bereits in reinem THF LiF eliminiert, während 6 weder in siedendem Hexan noch in siedendem THF eine Tendenz zur Salzeliminierung zeigt.

Kristallstruktur des Cyclotrisiloxans 9

Die Kristallstruktur von 9 (Abb. 3) zeigt einen planaren Si-O-Ring, der in den Atomen Si(2) und O(1) von einer zweizähligen Achse durchlaufen wird. Die Si-O-Abstände

liegen mit 162.9-164.7 pm im Bereich der in bekannten Cyclotrisiloxanen¹⁷⁻²⁰. Die Si-O-Si-Bindungswinkel verkleinern sich auf im Schnitt 134.2° gegenüber 155.0 bzw. 178.1° in der Ausgangsverbindung 8.

Abb. 3. Struktur von 9 im Kristall

Tab. 5. Atomkoordinaten ($\times 10^4$) und äquivalente, isotrope thermische Parameter ($pm^2 \times 10^{-1}$) von 9^a

	x	у	z	U(eq)
Si(1)	6544(1)	3450(2)	1042(1)	25(1)
Si(2)	7500	2500	-344(1)	29(1)
0(1)	7500	2500	1381(3)	28(2)
0(2)	6686(4)	3330(4)	171(2)	30(1)
C(1)	4979(6)	2984(7)	1299(4)	41(2)
C(11)	4566(11)	2076(12)	716(6)	59(5)
C(12)	4055(12)	3966(15)	1272(9)	65(6)
C(13)	4927 (13)	2415(13)	2038(5)	57(5)
C(11')	4057 (35)	3858(32)	976(18)	48(10)
C(12')	4681(29)	1756(16)	1011(18)	49(8)
C(13')	4952(19)	3181(22)	2126(11)	26(5)
C(2)	6964(6)	4998(6)	1324(4)	41(2)
C(21)	6141(14)	5950(14)	987(10)	66(5)
C(22)	8266(9)	5287(15)	1164(8)	71(4)
C(23)	6762(14)	5155(13)	2158(7)	66(4)
C(21')	7948(18)	5434(22)	809(12)	40(6)
c(22')	7644 (22)	5050(22)	2045(9)	40(6)
c(23')	5985(22)	5948(22)	1242(15)	29(6)
C(3)	8436(8)	3458(8)	-911(5)	53(3)

^{a)} Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors.

Tab. 6. Ausgewählte Bindungsabstände [pm] und -winkel [°] von 9

Si(1)-O(1)	164.6 (3)	Si(1)-0(2)	164.7 (5)
Si(1)-C(1)	190.1 (7)	Si(1)-C(2)	188.3 (7)
S1(2)-0(2)	162.8 (5)	Si(2)-C(3)	184.6 (9)
0(1)-Si(1)-O(2) 105.4(3)	0(1)-Si(1)-C(1)	109,2(2)
0(2)-Si(1)-C(1) 108.6(3)	0(1) - Si(1) - C(2)	109.2(3)
0(2)-Si(1)-C(2) 109.3(3)	C(1) - Si(1) - C(2)	114.7(3)
0(2)-Si(2)-C(3) 109.2(3)	0(2)-Si(2)-O(2A)	107.2(3)
0(2) - Si(2) - C(3A) 110.9(3)	C(3)-Si(2)-C(3A)	109,6(6)
Si(1)-O(1)-Si	(1A) 134.6(4)	Si(1)-0(2)-Si(2)	133.7(3)

Experimenteller Teil

Lithium-di-tert-butylchlorsilanolat (3)7: Ausb. 2.6 g (95%).

Lithium-di-tert-butyl(di-tert-butylfluorsiloxy)silanolat (6a): 3.4 g (10 mmol) 4 in 30 ml n-Hexan werden mit 10 mmol n-C₄H₉Li (15% in Hexan) lithiiert. Die Lösung wird bis zur leichten Trübung eingeengt. 6a kristallisiert nach 12 h bei -3 °C aus; Ausb. 3.3 g (95%).

2,2,4,4-Hexa-tert-butyl-6,6-dimethyltrisiloxan (9): Eine Lösung von 3.9 g (10 mmol) 8⁸⁾ in 30 ml THF wird 12 h bei Raumtemp. gerührt und anschließend bis zur leichten Trübung eingeengt. 9 kristallisiert nach 8 h bei Raumtemp. aus; Ausb. 2.9 g (75%).

Analytische Charakterisierung von 6, 9 siehe Lit.^{3,8)}.

Kristallstrukturen von 3, 6a und 9²¹⁾: Die Intensitätsmessungen wurden bei - 85°C auf einem Stoe-Siemens-AEG-Vierkreisdiffraktometer mit graphitmonochromatisierter Mo- K_{α} -Strahlung (λ = 71.073 pm) vorgenommen. Nach Bestimmung und Verfeinerung der Zellparameter wurden die Reflexintensitäten nach der Profile-fitting-Methode²²⁾ bestimmt. Die Strukturen wurden mit direkten Methoden gelöst (SHELXS-86) und die Parameter der daraus resultierenden Nichtwasserstoffatome anisotrop verfeinert. Die Wasserstoff-Atome wurden geometrisch positioniert (C-H-Abstand 96 pm, H-C-H 109.5°) und mit fixierten U_i-Werten versehen. In der Struktur von Verbindung 9 sind die Methyl-Gruppen beider tert-Butyl-Gruppen fehlgeordnet. Die Besetzungsfaktoren wurden mit 0.7 bzw. 0.3 festgesetzt und die Kohlenstoff-Atome bis auf C(11), C(12) und C(13) (anisotrop) isotrop verfeinert. Die C-C-Bindungslängen sind in diesem Bereich mit schwachen "restraints" [1.54(1) pm] versehen. - Der große Ueq-Wert von C(8) in 3 ist auf eine Fehlordnung des THF-Moleküls zurückzuführen.

Kristallographische Daten

3: Kristallgröße 0.4 \times 0.5 \times 0.6 mm³, Raumgruppe $P2_1/c$, a =9.858(1), b = 17.423(2), c = 11.864(3) Å, $\beta = 100.01(3)^{\circ}$, V = 2.007nm³, Z = 2, $D_{ber} = 1.142$ Mgm⁻³, $\mu = 0.25$ mm⁻¹, Anzahl der gemessenen Intensitäten (2 $\Theta_{max} = 45^{\circ}$) 4270, symmetrieunabhängig 2611, beobachtet $[F > 4\sigma(F)]$ 2200, R = 0.044, $R_w = 0.051$ $[w^{-1} = \sigma^2(F) + 0.0005 \cdot F^2]$, Anzahl der verfeinerten Parameter 199, maximale Restelektronendichte $0.31 \cdot 10^{-6} e \text{ pm}^{-3}$.

6a: Kristallgröße $0.5 \times 0.6 \times 0.6 \text{ mm}^3$, Raumgruppe $P2_1/c$, a =18.710(4), b = 16.150(2), c = 21.802(4) Å, $\beta = 96.17(3)^{\circ}$, V = 6.549nm³, Z = 4, $D_{ber} = 1.042$ Mgm⁻³, $\mu = 0.17$ mm⁻¹, Anzahl der gemessenen Intensitäten (2 $\Theta_{max} = 45^{\circ}$) 10702, symmetrieunabhängig 8528, beobachtet $[F > 4\sigma(F)]$ 7481, R = 0.041, $R_w = 0.045$ $[w^{-1} = \sigma^2(F) + 0.0003 \cdot F^2]$, Anzahl der verfeinerten Parameter 597, maximale Restelektronendichte $0.27 \cdot 10^{-6} e \text{ pm}^{-3}$.

9: Kristallgröße 0.5 \times 0.5 \times 0.7 mm³, Raumgruppe $P4_2/n$, a =11.263(1), c = 18.758(2), V = 2.380 nm³, Z = 4, $D_{ber} = 1.091$ Mgm⁻³, $\mu = 0.21$ mm⁻¹, Anzahl der gemessenen Intensitäten $(2 \Theta_{\text{max}} = 50^{\circ})$ 4331, symmetrieunabhängig 2086, beobachtet [F > $4\sigma(F)$] 1881, R = 0.119, $R_w = 0.141 [w^{-1} = \sigma^2(F) + 0.0003 \cdot F^2]$, Anzahl der verfeinerten Parameter 119, maximale Restelektronendichte $0.90 \cdot 10^{-6} e \text{ pm}^{-3}$.

CAS-Registry-Nummern

2 · Li: 102729-01-1 / 3: 123881-41-4 / 4: 82449-13-6 / 4 · Li: 118631-69-9 / 6a: 123881-42-5 / 9: 92810-42-9

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

¹⁾ U. Klingebiel, Angew. Chem. 93 (1981) 696; Angew. Chem. Int.

Ed. Engl. 20 (1981) 678. ²⁾ O. Graalmann, U. Klingebiel, W. Clegg, M. Haase, G. M. Sheldrick, Z. Anorg. Allg. Chem. 519 (1984) 87.

- ³⁾ O. Graalmann, U. Klingebiel, W. Clegg, M. Haase, G. M. Sheldrick, Chem. Ber. 117 (1984) 2988.
- ⁴⁾ O. Graalmann, U. Klingebiel, W. Clegg, M. Haase, G. M. Sheldrick, Angew. Chem. 96 (1984) 904; Angew. Chem. Int. Ed. Engl. 23 (1984) 891.
- ⁵⁾ K. Dippel, U. Klingebiel, G. M. Sheldrick, D. Stalke, Chem. Ber. 120 (1987) 611.
- ⁶⁾ D. Schmidt-Bäse, U. Klingebiel, J. Organomet. Chem. 364 (1989) 313
- ⁷⁾ D. Schmidt-Bäse, U. Klingebiel, Z. Naturforsch., Teil B, 44 (1989) 395
- ⁸⁾ D. Schmidt-Bäse, U. Klingebiel, Chem. Ber. 122 (1989) 815.
- ⁹⁾ G. Boche, Angew. Chem. 101 (1989) 286; Angew. Chem. Int. Ed. Engl. 28 (1989) 277.
- ¹⁰⁾ D. Scebach, Angew. Chem. 100 (1988) 1685; Angew. Chem. Int.
- Ed. Engl. 27 (1988) 1624. ¹¹⁾ N. H. Buttrus, C. Eaborn, P. B. Hitchcock, A. K. Saxena, J. Organomet. Chem. 284 (1985) 291.
- ¹²⁾ O. Graalmann, U. Klingebiel, J. Organomet. Chem. 275 (1984) C1.
- ¹³⁾ W. Clegg, U. Klingebiel, G. M. Sheldrick, Z. Naturforsch., Teil B, 37 (1982) 423.

- ¹⁴⁾ J. Hvoslef, H. Hoppe, B. D. Murray, P. P. Power, J. Chem. Soc., Chem. Commun. **1983**, 1432.
- ¹⁵⁾ P. B. Hitchcock, N. B. Buttrus, A. C. Sullivan, J. Organomet. Chem. 303 (1986) 321. ¹⁶ Ein Li – O-Sechsring ist bisher nur innerhalb eines hexagonalen
- Prismas bekannt: P. G. Williard, G. B. Carpenter, J. Am. Chem. Soc. 107 (1985) 3345.
- ¹⁷⁾ N. G. Bokii, G. N. Zakharova, Yu. T. Struchkov, Zh. Strukt. Khim. 13 (1972) 291
- ¹⁸⁾ V. E. Shklover, N. G. Bokii, Yu. T. Struchkov, K. A. Andrianov, B. G. Zavin, V. S. Svistunov, Zh. Strukt. Khim. 15 (1974) 90.
- ¹⁹⁾ V. E. Shklover, N. G. Bokii, Yu. T. Struchkov, K. A. Andrianov, B. G. Zavin, V. S. Svistunov, Zh. Strukt. Khim. 15 (1974) 841.
- ²⁰⁾ W. Clegg, Acta Crystallogr., Sect. B, **38** (1982) 1648.
- ²¹⁾ Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54163, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ²²⁾ W. Clegg, Acta Crystallogr., Sect. A, **37** (1981) 22.

[264/89]